Silicon photodiodes are semiconductor devices responsive to high energy particles and photons. Photodiodes operate by absorption of photons or charged particles and generate a flow of current in an external circuit, proportional to the incident power. Photodiodes can be used to detect the presence or absence of minute quantities of light and can be calibrated for extremely accurate measurements from intensities below 1 pW/cm2 to intensities above 100 mW/cm2. Silicon photodiodes are utilized in such diverse applications as spectroscopy, photography, analytical instrumentation, optical position sensors, beam alignment, surface characterization, laser range finders, optical communications, and medical imaging instruments.
Planar diffused silicon photodiodes are simply P-N junction diodes. A P-N junction can be formed by diffusing either a P-type impurity (anode), such as Boron, into a N-type bulk silicon wafer, or a N-type impurity, such as Phosphorous, into a P-type bulk silicon wafer. The diffused area defines the photodiode active area. To form an ohmic contact another impurity diffusion into the backside of the wafer is necessary. The impurity is an N-type for P-type active area and P-type for an N-type active area. The contact pads are deposited on the front active area on defined areas, and on the backside, completely covering the device. The active area is then deposited on with an anti-reflection coating to reduce the reflection of the light for a specific predefined wavelength. The non-active area on the top is covered with a thick layer of silicon oxide. By controlling the thickness of bulk substrate, the speed and responsivity of the photodiode can be controlled. Note that the photodiodes, when biased, must be operated in the reverse bias mode, i.e. a negative voltage applied to anode and positive voltage to cathode.
PRINCIPLE OF OPERATION
Silicon is a semiconductor with a band gap energy of 1.12 eV at room temperature. This is the gap between the valence band and the conduction band. At absolute zero temperature the valence band is completely filled and the conduction band is vacant. As the temperature increases, the electrons become excited and escalate from the valence band to the conduction band by thermal energy. The electrons can also be escalated to the conduction band by particles or photons with energies greater than 1.12eV, which corresponds to wavelengths shorter than 1100 nm. The resulting electrons in the conduction band are free to conduct current. Due to concentration gradient, the diffusion of electrons from the Ntype region to the P-type region and the diffusion of holes from the Ptype region to the N-type region, develops a built-in voltage across the junction. The inter-diffusion of electrons and holes between the N and P regions across the junction results in a region with no free carriers. This is the depletion region. The built-in voltage across the depletion region results in an electric field with maximum at the junction and no field outside of the depletion region. Any applied reverse bias adds to the built in voltage and results in a wider depletion region. The electron-hole pairs generated by light are swept away by drift in the depletion region and are collected by diffusion from the undepleted region. The current generated is proportional to the incident light or radiation power. The light is absorbed exponentially with distance and is proportional to the absorption coefficient. The absorption coefficient is very high for shorter wavelengths in the UV region and is small for longer wavelengths (Figure 2). Hence, short wavelength photons such as UV, are absorbed in a thin top surface layer while silicon becomes transparent to light wavelengths longer than 1200 nm. Moreover, photons with energies smaller than the band gap are not absorbed at all.
APPLICATIONS
• Photodiodes are used in applications similar to photodetectors, photoconductors, charge coupled device and photo multiplier tubes
• Photodiodes are used in consumer electronic devices such as VCRs, televisions, smoke detectors and compact displays
• They are often used for fire sensing in industries and they have better linear response than photoconductors
• They are also widely used in various medical applications such as detectors for computer tomography, pulse oximeters etc